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1. The Operational Approach

There are essentially two possible approaches to physical
geodesy (as also to other natural sciences): they might be called
the model approach and the operational approach. Essentially, the
f i rs t approac h s tar ts from a th eor y, the second from the observa-
tions. Obviously, the two approaches are closely related to the
de ductive method and the inductive method in the natural sciences.

In the model approach , one starts from a mathematical mo-
del or from a theory and then tries to fit this model to reality ,
for instance by determining the parameters of this model from ob-
serva tions. The classical geodetic example are the centuries-old
attempts to determine the parameters of an earth ellipsoid by
observation , from the old grade measurements to modern satellite
observations.

Perhaps the most elabora te form o f th i s model ap p roac h i s
the boundary-value problem of physical geodes y in the formulation
of Mo lodensky . It has a mathematically enormously interesting and
deep theory and is practically highl y s ign i f i cant , as th e many
gravimetr ic geold determinations and computations of deflections
of the vertical show. However , this approach has i ts weeknesses:
the required continuous gravity coverage is practically not
real i za bl e; on the o ther hand , many other important data cannot
be incorporated into this theory . The model selects its data. 

~fr
At present we have a grea t number of geodetic measurements

of very different types , from terres trial angle and d i stance
measurements to sate l l i te  data of various kinds. The quest ion
ar ises:  how can we use and combine all these data in the best
possible way . This is the operational approach.

Let us summarize. In the model approach one asks:  how can
I best determine my model by suitable observat io ns? In the opera-
tional approach one asks: how can I make best use of all my ob-
servat ions?

As a matter of fac t , the two approaches do not compete
wi th each other; each one incorporates Important aépects , ard the

£ 
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two approaches mutually complement each other.
The opera tional approach to physical geodesy has come up

at a relatively recent date , when a huge number of measurements
of new types was ava i lab le  and when it turned ou t that the clas-
sical , espec ia l l y  the grav imetr ic approach fa iled to give a co rn —
plete answer in view of the lack in gravity data.

In geometrical geodesy already least-squares ad justment
is in the spir i t  of an ope rational approach (how can I best use
al l my measurements). In physical geodesy, opera tional methods
have been known under the names “ leas t—squares  co l locat ion ” ,
“ integrated geodesy ” , “operational geodesy ” . Al l  these methods
are very s imi lar;  they all aim at an adequate treatment of the
gravity f ield , in addition to an adj ustment of measuring errors.
They all use quadratic minimum principles incorporating not only
th e measuring errors , bu t also the anomalous gravity field.

The purpose of the present report is a systematic treat-
ment of the operational approach . Obviously, the determination
of the gravity field , of station coordinates, etc., from discrete
measurements does not in general admit a unique solution; it Is
an “ improperly posed problem ” . The question is: Which pr actically
feasible possibilities exist? Is there a genuine alternative to
least-squares collocati on and rela ted methods , wh i c h Is , perhaps ,
even sim pler?

This question is treated by using modern techniques for
solv ing improperly posed problems . They all seem to converge on
col locat ion by means of kernel functions and least-squares collo-
cat ion; but we shall also try to point out a l ternat ives.

2. Measurements as Nonlinear Functionals

Every geodetic measurement depends:
1. on one or several points In space;
2. on the earth’ s gravitational field.

kH.. .~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _
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Symbolically we may write:

1 = F ( X ,V). (2— 1)

Here 1 d eno tes th e measuremen t under  cons id era ti on , V d eno tes
the gravitational potential , and the vector X comprises the
coord i na tes of th e po i n ts to w hi c h th e m e a s u r e m e n t r e f e r s , and
poss ibly other parameters. For instance , if we have two point s
P and Q and if we use rectangular coordinates xyz referred
to some Car tes i an re ference  system , then

x = [x~ , y~~, z~~, X
Q~ YQ~ 

zQ] , (2 2)

I denoting the transpose (in the sequel , vec tors w i l l  be co l umn
vec tors unless the contrary is stated).

T he symbol F denotes  an y f u n c ti onal de pendence on X
and V. With respect to X , it is an ordinary function; but it
is not necessarily an ordinary function of V but may involve
first and higher derivatives of V, i n t e g r a l s , etc. In the ter-
m inology of functional analysis , F is a (nonl inear) functional
of X and V.

Deno te th e number  of componen ts of x by m; the n X
may be said to belong to m -dimensional Euc lidean space R .  The
func tion V may be considered to belong to some set , or space ,
H of harmon i c f u n c ti on s~ T h en , in the jargon of modern mathema-
t i cs , the functional F is a mapp ing of the product space
R x H into R , the real number line:

m

F: R x H + R , (2-3)

which , in  the l a n g u a g e  of p la i n m o r t a l s , means  s i mpl y that F
a s s o c i a t e s , to each harmonic function from the set H and to
each vector Rm , a real number whi c h represents the numerical
value of the observat ion 1.

I _ _ _ _ _  

_ _ _ _  

L
-
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More intuitively we may say that F is nothing else but
a prescr iption for computing a number 1 from a given vector X
an d a g i ven f u n c ti on V: l f X and V are su pp osed to be known ,
then it must be possible to find , in an unambiguous way, the va-
lue of 1. In o th er terms , F denotes an opera tion to be per- 

.
.

formed on X and V , the resul t of which is a real number.
T hus , funct ionals are special cases of operators: for an

operator , the result of the operat ion may be quite general:  a
vector or another funct ion; if the result  is a real  number , the
operator is called a functional. Best known from functional ana-
lysis (cf. Kantorovich and Aki l ov, 1964; Me i ssl , 1975; Tscherning ,
1978) are l inear operators and linear functionals. Nonlinear
operat ions are basic in the so-ca l led  “Modern Analys is ” (Dieu—
donn é, 1960; Loomis and Sternberg, 1968).

Our funct ionals (2-1) will , in general , be nonlinear; in
the next sect ion , we shall describe how they can be l inear ized.

The physical meaning of such funct ionals F w ill be clear
from the examples given below.

Instead of the gravi tat ional  potential V , we may a l s o  use
the gravi ty potential W , defined in the usual way by

W V + ~ w 2 (x 2 + y2) , (2-4)

hI denoting the angular veloci ty of the earth’s rota tion and the
z -ax is  coinciding with the earth’ s ax i s of rotation. For the
present purpose It is appropriate to regard w as cons tan t  and
the rotation axis as invariable with respect to the earth’ s body :
the very small deviations from this idealized situati on can easi -
ly be ta ken In to acc oun t by correc ti ons , without chang ing the
essential picture.

Throughout this report , the system xyz will thus be de-
fined as follows: the origin is at the earth’ s center of mass ,
the z -axis coincides with the (mean) rotation axis , and the x-
axis goes through the (mean) Greenwich meridian.

- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - ~ ‘ ~~~
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T h en , instead of (2-1), we h ave

1 = F ( X ,W). (2—5 )

As W is expressed in terms of V and X by (2-4), the rela-
tions (2-1) and (2-5) are equivalent; as a matter of fact , the
letter F denotes different functionals in each of the two ca-
ses.

Le t us now illustrate these abstract considerations by
means of concrete examples.

As tronomical and gravimetric observations. The gravity
ve ctor G is expressed in terms of gravity g and astronomical
latitude 0 and longitude A by means of the well-known rela-
tion

gcos’~cos A
-G = gcos .sinA (2-6)

gs ino

(cf. Heiskanen and Moritz , 1967 , p.57). On the other hand , G
is the gradient of the gravity potential W

W
G = grad  W = 

[w~
]
~ (2-7)

W denoting the partial derivative

(2-8)

and s imi lar ly for ~~ and W~ . Comparing (2-6 )  and (2—7)  and
solving for •, A , and g we obtain

• tan~
1 W~ , (2—9)

1w 2 + w 2
x y

L ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—
~~~~~~~~

_ -
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w
A = tan 1 .

~~~
. , (2~ 10)

g = 1w2 + w 2 + w 2 
. (2-11)

x y z

These equat ions have the form (2 -5 ) :  they express the observa b le ’
•, A , g in terms of the potential W , not as ordinary functions

of W , but as nonlinear functionals involving the operation of
d ifferentiation. Let X denote the coordinate vector of the ob-
servation station:

x
X = y . (2—12)

z

Then , as W , W , W are func ti ons of x , y, z, the express ions
(2-9) to (2-11) do , in fact, also depend on X , in agreement with
(2—5).

Angle and d is tance measurements. The observab les :  azimuth
A , zeni th d is ta nce Z , and d is tance S between two points P
and  Q , can be expressed in terms of the coordinate differences

A x x Q X~
= y

Q 
- y~, , (2-13)

~Z a Z Q — Z ~

as f o l l o w s  (He iskanen  and Morltz , 196 7 , p.219) :

A • t n 1 - ~xs inA + ~yco sA (2 14)a 
- ~xs in0cosA - ~ys 1nes inA + ~zcos0 ‘ . I

z ~~~~~ ~ X C O S~~COSA + AyC0S•slnA + ~zsin• (2-15)

~~~~ ~~ + ~z
2

• + + A Z 2 
. (2 16)

-~~~~~~~~~~~ -

4~~~~ ~ ,~ ó4li~~~ I~~~ . ~.. ~ ~~. _-_- — ~~ 4’-
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Again , these equations have the form (2-5); the vector X is
now

x = [ x ~~ y~~, ~~ X
Q~ Y Q~ 

ZQ ] I  (2-17)

comprising the coordinates of both points P and Q, and the
dependence on the potential W is implicitly through 0 and A

as ex pressed by (2-9) and (2-10); hence A and Z are , in fact ,
non li near  fun c t i o n a l s  of W. No te th a t th ese o b serva b les  de pen d
on the target point Q only because  it s coord i na tes en ter i n to
Ax , Ay, A z; on the observation station P they depend in the
same way, b u t th ere i s a n add iti ona l dependence  on P b ecause
0 and A , and hence W,~, W~,, W~ , refer to -this point.

A measured horizontal angle ~ ma y be cons i dered as th e
difference between two azimuths:

w = A 2 — A 1 , (2—18)

measured  a t an ob se rva ti on sta ti on P to two tar ge ts Q1 and Q 2 .

Both azimuths A 1 and A2 may be express -ed by (2-14); the resul-
ting expression for w clearly involves the coordinates of P,

and  
~2 , so that , i n  th e presen t case , th e vec tor X cons i s ts

of 9 components , wh i ch are the coord i na tes of these th ree  po i nts ;
we again get a nonlinear funct iona l of form (2-5).

It goes without saying that the functional expression
(2-16) for the distance (2-16) Is also a special case of (2-5),
in which there simply is no factual dependence on W: measured
straigh t distances between two fixed points do not depend on the
grav i ty  f ie ld .

Sate l l i te  observat ions. Consider a distance S measured
from a ground station P to a satellite Q by laser or radar.
(Cf. Fig. 2-1; for a non-technical and compact review of various
techniques see (Cordova , 1977).)

~ ~~~~~ ~~~~~~~~~~~~ 

- 

.. -~-j~-~~ . - ~~~~~~~~~~~~ . 
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S distance measurement
dS/dt doppler observation
h satellite altimetry S

ds/dt satellite-to-satellite tracking (doppler)

Figur e 2—1 . Satellite techniques
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Such a distance can again be represented by (2-16) but , if we
operate in the orbital mode , the coordinates of Q can be fur-

• ther expressed by the six orbital elements p 1 , p2, . . . , p6 of
so me re fe rence  or bit an d th e coeff i c i en ts J an d K of th e

nm nm
expansion of the earth’ s g r a v i ta ti ona l  potential V in terms of
spherical harmonics. Thus S will have the form of some function

S = S ( x p ,yp ,zp ;p i ,p 2,...,p 6;J nm ,Knm) . (2—19)

This is a functional of form (2—1). The vector X is given now
by

x = [xp ,yp ,zp ;p 1 ,p 2,...,p6]T; (2-2 0)

it comprises station coordinates and orbital parameters. The sphe-
rical—harmonic coefficients J and K may be expressed innm nrn
terms of V by well-known integral formulas -(of type of eq.(1-76)
of (He i s kanen  and Mor i tz , 1967, p .31)), which explains the func-
tional dependence on V.

The change of distance S with respect to time t, that
is , the range-rate dS/dt , can be measured by. doppler observations.
By integrating dS/dt with respect to t from t1 to t 2, one
obta ins distance differences S2 

- S1 . By photographing the sa-
tellite against the background of stars one finds the rig ht as-
cens ion and the declination of the spatial direction PQ, or i n
other terms , the unit vector e of this direction (Fig. 2-1). All
these observables have the same mathematical strt:~ ture as (2—19):
they are again functionals of type (2-1), the vector X being
given by (2-20).

Satellite altimetry can be considered to measure the height
h of a satellite above the geold: the ocean surface reflects a
radar signa l emitted by the sa te l l i te , and under idealized condi-
t i ons , this surface coincides with the geold. We claim that h
can again be expressed as a functional of type (2-1), w i th

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~
-
~~
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x 
~~~~~~~~~~~~ (2—21)

This is true if it -Is possible , given X and the potential func-
ti on V ( x ,y,z), to compu te h. In fact , assume the gra v it at i on al
po tential V (x ,y,z) to be known as a funct ion of position at all
po ints outside and on the earth ’ s surface. Then the gravity po-
tential function W is also known by (2-4), and consequently the
geold is an equip otentia l surface

W ( x ,y, z)  W 0 = const. (2-22)

Now , the satellite orbit can be computed from the parameters 
~k

of the reference orbit and the gravitational potential V , and
the position Q of the satellite along the orbit is uniquely de-
term ined by giving the corresponding instant t (which we assume
to be known). Thus both the geoid and the satellite position Q
are determined , and so i s  h , as the length of the perpendicular
from Q to the geold. Therefore , by the definition Of the func-
tional (2—1 ) given above , the satellite altime ter measurement h
is , in fact , such a functional . -

The data of sa t e l l i t e - to—sa te l l i t e  t rackinj are time chan-
ges of the distance s between two satel l i tes (FIg. 2 —1 ) .  Such
a range rate ds /dt is again meas~ired by means of the doppler
pr inciple. At present one generally uses one high and one low sa-
t e l l i t e ,  but the use of two low satellites which are close to
each other is also possible. Considerations analogous to the pre-
ceding ones make it obvious that ds/dt has again the form (2—1), 

5 ’

the vector X comprising now the 6+6 elements of the two re-
ference orbits .

Satellite gradiomet~y Is des i gned to measure e l emen ts (or
linear combinati ons of elements) of the second-order gradient 

‘

tensor

- 
, ; _ ~~ _ _ . l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V V Vxx xy xz

• ~~~ V~~~ V~~ , (2 -23)
V V Vxz yz zz

which is a symmetric matrix formed by the second derivatives of
the potential V with respect to the coordinates xyz . Any se-
cond-order gradient , sa y V , depen d s on pos iti on:

xz

V = V (x ,y,z) . (2-24)xz xz

It has , th ere fore , the form (2-1), with

x
- X =  y ; (2—25)

z

th e p rescr i p ti on for  compu t i n g  the f u n c t i onal  F i n t he presen t
case consis ts in differentiating V with respect to x and z
and taking V at the point with coordina

!
tes (2—25).

S Very-long-baseline interferometry measures the delay -r,

with which a radio signal emitted from an extragalactic radio
source is received at two different places ’ P and Q (Macdoran ,
1973). By multiplying ~ with the light velocity c we get the
project -ion

D = PQ.e (2-26)

+

of the vector PQ connecting the two points onto the direction
(sup posed known) to the radio source represented by the unit vec-
tor e. Similarly to a distance measurement (2-16), D does not
depend on the gravity field , and we have a spec ial case of (2-1)
with X being given by (2-17) and with no explicit dependence

on V.
These examples should make it obvious that all geodetic

measurements, without exception , can be represented as functionals

(2-1) or (2-5). Th is simple and general fact will be basic for the

considerations to follow.

_______
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It is clear that we have taken into account only the geo-
metrical and gravitational structure of the problem. We have ab-

- stracted from random and systematic errors , nongravitational
effects , etc . Random errors will be considered later in this re-
port , an d systematic effects are assumed to have been removed by
appropriate corrections. If necessary , sys tema ti c p arame ters can
be included in the vector X in (2-1) or (2-5).

3. Linearization

Every observation 1 gives an equation of type (2-1) or
(2-5). We thus obtain a system of functional equations

= F 1 (X ,W) , 
-

1 = F2 (X ,W)2 
- 

- (3—1 )

= Fq (X~ W) ~ 
-

wh ich are to be solved for the un known parameters X and the po-
tential function W.

S i nce t he f u n c t i o n a l s  F 1 , F2, ~~~ F are non—l inear ,
the system (3-1) is very difficu lt to handle directly. The usual 

S

procedure with difficult nonlinear problems is to linearize them
by Ta y lo r ’s theorem.

Let us introduce an approximate value X0 for  the vec tor
X and an approximation U to the gravity potential W. The func-
tion U is called the norma l potential ; it is generally taken to
be the external gravity potential of an equipotential ellipsoid

(cf. Heiskanen and Moritz , 1967, sec. 2-7).
We put

X • + U , (3—2)
W .U + T , (3-3)
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where the differences 6X = X - and T = W - U are considered
to be small ; I is called the anomalous potential (ibid., sec.2-
13).

Thus (2-5) becomes

= F (X 0+6X , U+T) (3-4)

an d a Taylor expansion gives

1 = F ( X 0,U)  + aT 6X + LI (3-5)

p lus higher order terms , wh ich we neglect. Here a is the column
vec tor of ordinary partial derivatives

ak -I~
_ (X

o,U) (3—6)

of F with respect to the component Xk of the parameter vector
- X , taken for the approximate values and U; a T is the cor-

respond ing row vector , so that aT6X is a scaler product. The
term IT -is less elementary: It expresses a linear operator I
act ing on the function I. The meaning of this wi l l  be clear fro n
the examples to follow.

By means of the substitution -

61 • F(X ,W) - F( X0,U) , (3—7)

the nonlinear system (3-1) thus becomes ‘the linear system

6l~ • a~’6X + L 11 , 
.
‘

61 2 a~6X + L21 
•

(3-8)

61 •a T6X + L T .  ‘ S

q q q .

.. ~~~~~~ 

—

~.l------ - 

— 
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The linearization process will be made clear by considering
some basic special cases.

As tronomical and gravimetric observations. The equation s
to be linearized are (2-9), (2-10), an d (2-11). Here we are con-
siderably helped by the fact that these expressions are just or-
dinary functions of W , ~~~ W

~
; X i s s i mpl y th e coord i na te

vec tor (2—12).
T here fore , we first linearize the gradient vector (2-7).

Us i ng i ndex no tat i on , we wr ite x = x 1 , y = x2, z = x3 and
w wx 1

grad W = W~, = W 2 . (3-9)
w w

z 3

T h us

W~ = - (1 = 1,2,3) . (3-10)

The derivatives are taken at the original point with coordinates

X = 
J~
x~j (k = 1,2,3) . (3-11)

The approximation point is

= [~] ; (3-12)

In  o b v i ous no ta ti on ,

xk = x~ + 6X k (3-13)

Then (3-10) becomes

W i 
~~ 

(+~7)~
+ ~~~~~~~~~~ ~ (3-14)

us ing the summation convention (summation over the repeated Index
j). The notation ( )

~ 
indicates that the respective quantity is

~~
_
~~~~J,’_ - 5  - - ~~~~~-~~~~~~~- ~~ - -~~ --~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~- -
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to be taken at the approximation point (3-12); W i Is , of cours e ,
taken at the original point X.

We now introduce W = U + T and obtain

= + {
~

_} + 
[a~j~x;}0”i + {a~ j ~x j ] o ”i • (3-15)

The last term is already of second order ( T and 6X~ are first-
order quantities ) and will be neglected. We further put

aU -— U~ , (3-16)
jo

iI_ 1 (3- 17ax i. ‘i o

a N . (3-18)ax ax iji j o

Thus (3-15) becomes fi nally

W~ = U~ + T~ + M
~~

6x
~ 

S (3-19)

completing the linearization of the gravity vector (3-9).
The straightforward way to linearize equations (2-9) to

(2-11) is to substitute (3-19) into these equations and to expand
the functions in the usual way by Taylor ’s theorem , considering
the fact that the second and third term on the right-hand side of
(3-19) are small. This is simple but laborious ; more efficient is
an indirect procedure. - 

‘
We combine (2-6) and (2-7) into the equation

W 1 • -gcosocosk . S

• -gcosasinA • (3-20)
= -gam e ;

here all quantit ies refer to the original point X.

~~~~~~~~~ 4. 

— 

— —
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In an ana l ogous  wa y we wr it e

- U 1 
= -ycos~cosA ,

U 2 = — 1cos~ sinx , (3-21)
U 3 = — y5 ffl 4

Here all quantitie s refer to the approximation p oint: 
~ 

is nor-
mal gravity , and  ~ and A are normal latitude and longitude.
Cf. (Heis kanen and Moritz , 1967 , p .315), where  t h ese n orma l geo-
gr aphical coordinates have been denoted by ~~ an d x~ .

We put

0 = ~ + 60

A = A + ~5A , (3—22)
g y + 6g

su bstitute into (3-20) and expand by Taylor. The result is readi-
ly found to be

= U 2 + Q~ycos$6A , (3—23)
W 3 U 3 ~~6g

where the mat r ix
r

sI fl~ Cos A sinx —co s~cosx
Q = sin q sinx —cos x —cos~ sInx (3—24)

-cos~ 0 -sln~

is obtained by d i f ferent iat ion of (3-21).
On the ot her h and we have  ( 3 — 1 9 ) ,  which may be wr i t ten in

the fo rm S

W i U i
W2 = U2 + grad l  + M6X  . (3—25)
W 3 U 3

_ _ _ _ _ _ _ _ _ _-
— S 

— —.--- — — -7- 5— -.-- 
S

5 5 • 5  - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - S ‘ 5 -  ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ __________________



The matrix Q is easily seen to be orthogonal (why?); therefore
i ts Inverse  is simply the transpose:

Q 1 = Q T 
- ( 3—26)

Therefore , the comparison of (3-23) and (3-25) gives

‘y6~
ycos p6A = QTM6X + QTgrad T , (3-27)

69

which completes the linearizati on of astronomical latitude o
and longitude A . and of measured gravity g.

It is evident that (3—27) is , indeed , a linear function of
the components 6x , ~y, ~z of the vector oX. As regards

QTgrad I , it gives for each difference oo., Oh, og, a l i n e a r  ex-
p ress ion of the form

+ + = LI . (3-28)

The operation expressed by the functional L consists in forming
the partial derivatives and taking a linear combination of them.
Since differentiation is a linear operation , L Is indeed a u n -
ear functional.

Direction and distance measurements. The straightforward - 
-

approach Is to differentiate equations (2—14), (2-15) and (2—16),
as outlined In (Heiskanen and Morltz , 1967, pp .220—221) . The re-
suit will be differential formulas of form of eq. (5—83), IbId.
The actual work Is , however , quite cumbersome though not diffi-
cult.

Again , an indirect approach might be preferable. We put

sslnZcosA u
ssinZs inA a v • Y . (3—29)
scosZ w

~ 

‘

~~~~~~~~~~~
-
~~~~~ ,

- ~~~~ 
‘
~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~

~ ‘
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Then the vector V so defined is related to the difference vector

AX = jYQ - (3-30)
• [~~~~~~zp

by the linear transformation

V = RAX , (3—31)

where R is the orthogonal matrix

-S inOcosA — s in Os in h cOSO
R = -sinh CoSh 0 . (3 32)

CO5O cOSA CoSOs iflA 5 m b

T hi s i s c l ear  because  u ,v,w can b e i n terpre ted  as rec ta n g u l ar
coordinates in a local system -In whic h the w —axis has the direc-
tion of the gravity vector and the axes u and v point north
an d eas t, respectively; the matrix R is formed by the componen ts
in the xyz system , of the un it vectors  e ’ , eu , n co r r e spond i ng
to th e uvw coor di na te axes ( H e i s kanen  an d Mor it z , 1967 , pp .218-
219).

The d ifferentiation of (3—29) gives , in analogy to (3—23) I -

aO Z
oV  = S aSin ~6A (3 33)

OS

where S is the orthogonal matrix

cos cc osc s — s i n c t  s in~ co su
S = coscsInct cosc s sin~ s inct . (3 34)

—s i nç  0 cos c

- 

~~~~~~~~~~~~~ S ~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Here we have designed by ~~~~ 
the “ normal” equ i v a l e n ts of the

observab les A ,Z,s, so t h a t

A a + O A ,
z = ~ + az , (3 35)
S = a + 65

The qu antities cz,~~~,a can be computed from (2—14), (2-15), ana
(2-16) by using approximate coordinates X and replacing b ,A
by 4 , A.

By differentiation of (3-31), on the other ~and , we f i nd

= ROA X + ORA X . (3-36)

The combination of (3-33) and (3-36) gives , in view of the ortho-
gonality of the matrix S,

osin~ OA = STR OAX + STORAX . (3 37)
Os

The secon d term on the r ight-hand side is eas i l y found in

an indirect way . The matr ix R , by (3 -32 ) ,  depends on • and A;
the refore OR w i l l  be a l inear function of 6~ and OA. The
term ST O RAX represent s , therefore , the effect of a. and Oh

on oZ and aA (there is , evidently, no effect on as because
s is Independent of the gravity field ); this is nothing else but
the well-known effect of the deflection of the vertical on azi-
muth A and zenith distance Z.

The effect on the zenith distance Z is

• ~COSci + ~Sin~i (3-38)

(He-Iskanen and Norltz , 1967, p.190 , eq.(5-20)) and on the azimuth

- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= ~sinacot~ + n (tanq — cosacotc) (3-39)

(ibid., p .186 , eq.(5-13)). We have used the symbols ~Z an d a A
to indicate the partial influence , on Z and A , of the changes

• Ob and OA , which are related to the deflection Components ~
and n by

= 6$ , = 6AcoS~ (3—40)

The comparis on of (3-24) and (3—32) shows that , fo r  ~ =

and  A = A ,

R = .~Q T ; (3 41)

the geometrical interpretation of this fact -Is left to the reader.
In v iew of the relations (3-38) to (3—41), eq.(3—37) takes

the final form

Ox -~ 6x

asin COA l = ~5TQT 6y - 6yp~ + K[~~$~ OA] (3-42)
Os 

~~ 
OZ

Q 
- az~

where 
S

aCos~ aS ifl c~ - ‘
K = asinacosC S a(tan +sin~ 

- cosacos~ ) ; (3~43)
0 0

the matrices Q and S are given by (3—24) and (3-34).
These examples w ill illustrate how the l inear ized equat ions

(3-8) can be obtained . Similar linearizations can be found In
(Eeg and Krarup, 1975) , and (Grafarend , 1977).

Satell ite observations. Satellite observati ons can be lin-
ear ized in the same way, as outlined in (Kaula , 1967 ,p.67) or
(Heiskanen and Moritz , 1967 , p p.3 5 2  — 355). This Is theoreticall y

I

-~~ I ~ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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straightforward but computationally very laborious. For direction,
d i s tance , and Doppler measurements , linear izations can be found
in many forms in the l iterature . There fo re , we need no t go into
de tails here. We only mention , tha t the linear functional LI is ,
for satellite observations , usuall y expressed in spherical har-
mon i cs :

~ n
LI = ~ (a oC + b OS ) , (3-44)

nm nm nm nmn=2 m=O

w hi c h i s a l i near  com bi na t ion of the sp her ical-harmonic coeffi-
cients 6C and OS of T.

nm nm
For second-order gradien ts the linearization is straight-

forwar d; we have 
-

_ _ _ _  
= 

_ _ _ _  
+ 

~~~~~~~
E

3X
I

OX k ~~~~~~ ~

which is of form (3-5), VE be ing the normal (ellipsoidal) gra-
vitat ’ional potential. The vector ox k c an be f u r t her expressed
in terms of the orbi ta l  paramete rs; cf . eq . ( 9 - 35 )  of (Heiskanen
and Mor itz , 1967 , p.352). -

A l inearization for satellite —to-satellite tracking can be
found in (Kry f isk i , 1978).

4. Determination of the Gravi ty Field
as an Improperly Posed Problem

A problem is called properly posed if the solution satis-
fies the following three requirements: . 

S

- (1) ex i stenc e ,
(2) uniqueness ,
(3) stability .

This means that a solution must exist for arbitrary (within a
certain range) data , that there must be only one solution , and
that this solution must depend continuously on the data . If one

F’ T~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~J S - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-‘
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or more of these requirements are violated , th en we h ave  an
improperly posed , or ill—posed , ~-o b lem .

For a long time it was thought that only properly posed
pro b l ems  are p hysically meaningful. In fact , deterministic pro-
cesses , as con~ -Idered in classical mechanics , depend uniquel y
and continuously on the initial data— —t his is the essence of
causality--and thus correspond to properl y posed problems.

Only relatively recently Is was recognized that there are
important problems that are not properly posed. There is now an
ex tensive literature on improperl y posed p ro bl ems;  we men ti on
only two easily accessible books: (Lavrentiev , 1967) and , espe-
cially, (Tikhonov and Arsenin , 1977), and the review article
( N a s hed , 1974). f eodetic applications are considered in (Schwarz ,
1978); for Instance , the downward continuation of gravity is an
ill-posed problem. A s o  the work by Neyman (1977) should be men-
tioned. 

S 
-

Our p resen t tas k , the determination of the earth’ s gravi-
ta ti ona l  f i e ld  f rom m e a s u r e m e n t s , is a typical improperly posed
problem. The potential is so irregular that it cannot be comple-
tely described by any finite set of parameters; on the other hand ,
we have only a finite number of measurements. Hence , there i s no
un i que so l u ti on , and Condi tion 2 -Is violated.

Us ing the standard notation of (Tikhonov and Arsenin , 1977),
we may wri te equations (3-8) in the form

Az = u , - (4-1)

i f we pu t - 
-

61~ J

t . = 
6
~~2 t (4—2)

and

_
~ L.~

_
~

_ - — 1 ~~~~~ ~~~~~~‘~~‘ —r.J~~
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A is a linear operator , expressing the fact that equations (3-8)
permit the computation of the ob servat ions 6 1

k 
if OX and I

are supposed to be given; the operations involved in these corn-
pu tations are clearly linear. The operator A , th ere fo re , corn-
pr ises the vectors a~ and the linear f~nc ti o n a l s  1

k~In ma th ema ti cal terms , oX is a vector belonging to rn-
dimensional Eucl idean space Rm~ 

and I can be considered a mem-
ber of a Hilbert space H of harmonic functions; u belongs to
Rq • Therefore , the linear operator A (4-1) defines a linear
mapping; -

A: Rm x H -‘
~ Rq~ (4-4)

T he s o l u t i o n , if it exis ts , may be wri tten formally in the form

z A~~u , (4 5)

but it wi l l  ce rtainly not be unique. Therefore , A 1 i s no t an
inverse operator in the usual sense; it has the character of a
generalized inverse operator (analogous to generalized matrix inS-
ve rses ) .

For the solu tion of our problem we shall try to apply stan-
dard mathemat ical techniques for ill-posed problems . Nashed (1974,
p.295) ment ions the following possible approaches:

(a) a change of the concept of a solution;
(b) a change of the spaces and/or topologies;
(c) a change of the operator itself;
(d) the concept of regularization operators;
Ce) probabilistic methods or well -posed stochastic exten—

slons of ill -posed problems .
These app roaches may overl ap in various ways.

We shall esp e cially use the appro ach-es (b), (d), and (e);
they will be considered In the following sections 5,6, and 7. -

S

We fi nal ly point out that the vec tor X will only h av e

~ 

- 
—~~~- -

- S
. , - 

~ ~~~~~~~~~~~~~~~~~~~~ -- S 

~~~~~~~~ -
-
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l i n ear ly i ndepen d en t com p onen ts an d th a t a l so a l l  equa ti ons of
the system (3-8) are supposed to be linearly independent. In
other terms , we shall work with systems (4-1) that have full rank.

5 . Pure  C o l l o c a ti on -

Le t us suppose that the systematic parameters X (coordi-
na tes , etc..) are known with sufficient accuracy . We then have

= 0, and the system (3-8) reduces to

L~T = l~ , j = 1,2,...,q ; (5—1 )

for simplification , we have replaced Ol k by 1
k~ 

In  order  to
f i nd a so lu ti on , we app ly Approach (b) mentioned at the end of
the preceding section: a change of the solution space.

We shall try to approximate the desired function I by a
l i near  com bi na ti on f of su it a b l e  li nea r l y i ndepen den t  base
functions •1 ’ ~~~

- 
1(P) ~ f(P) =~~~~

bk+k ( P )  , 
- 

- 
(5-2)

P denoting the space point at whi ch these functions are being
cons idered , and bk deno ting suitable coefficient s. Since I is
harmon i c o u t s i de the ear t h’ s s u r f a c e , the base f u n c ti ons
mus t also be harmonic functions . 

S

Since there are q independent functions •k ’ 
the space

S of linear combina tions (5—2) is q -dimensional , so tha t the so-
lu t ion s pace , as well as the observation space , is q -d imension-

-

. al , and the operator A , c o n s i s t i n g  of the q functionals Lk,
mus t, for this part icular case , reduce to an q x q matrix , which S

in general has a regular inverse ; hence the problem will , in
general , become well-posed. S

Note that this is made possible by changing the solution
space from infinitely -dime nsional Hu bert space to the g -dimen-
sional space of linear combinatIons (5—2).  

I

~~~ ~~~~~~~ ~~~~~~~ - S .
~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-i’
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For the special case of interpolation , details can be found
in (Moritz , 1978b , c ) .

We subs titute (5-2) into (5—1) and get , because of lineari-
ty,

k=l k i k  
= (5-3)

The quantiti es 
S

Lj+k = A
ik (5 4)

being the values of linear functionals , are cons tants. Hence we
ge t the system of q l i near  e q u a t i o n s

A 
k
b
k 

2 
~ , (5-5)

k—i

wh ich can be solved for the q coefficients bk prov ided the
determinant of the matrix A ik is non-zero . The substitution of
t he bk into (5-2) gives the desired solution.

The approximati on of a function by fitting a linear corn—
b-Ination of base functions to a number of linear functionals is
collocation in the sense of approximation theory , cf.(Collatz ,
1966 , pp.29). t

As a matter of fact , interpolation Is a special case of
co llocation , when - 

-

L~T a T(P ~) , (5—6)

that is , when associates to a function its value at a parti-
cular point P ; this is the so-called evaluation function al.

Kernel functions. Consider now a positiv e-defi nite symme-
tric function K(P,Q) , harmonic as a function of both P and Q.
The positi ve definiteness of this function means that for any N,
the N x N matrix of elements K ( P

~
,P k ) .  for an y po i nts P 1 , P2,S 

..., P~. is positive definite . Harmonicity means that Laplace ’s

- 
- 

• S~~~~~~ -~~t)~~i~~ ~~~~~~ ~r’ i&~~’~~ - 
— - -
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equation is satisfied both at the point P (with Q held fixed)
an d a t Q ( f o r  f i xed P ) :

~~K(P , Q)  = 0 , (5-7)
AQ

K(P .Q) = 0 - ;  ( 5 - 8 )

the domain of harmon icity may be the exterior of a certain sphere
completely inside the earth.

Such a f u n c ti on K ( P ,Q) will be called a kernel functi on.
Assume now that base functions have the special form

= L~ K ( P ,Q) , (5-9)

where L~ means that the linear functional is app lied to the
variable Q.

Then the matrix (5-4) takes the form -

C
ik 

= L~ L~ (K ,Q) , S - (5-10)

an d (5—5) becomes

k=l i k k  
= l~ . - (5-11)

We solve this linear system and substitute the result into (5-2), 1 -

~~

which by (5-9) has the form I :
f ( P )  = b • (P) = b LQK(P ,Q) . (5-12)

i— i i—I. S

The result may be written as

~ C C — 1  1‘
~11 12 ” lq 1
C C ..C 1

S f ( P )  = [c r1 C~2 . .  CpqJ •
2 1 22 2q 2 , (5—13)

C C ..C 1
qi q2 qq q

_ _  _ _  __ 

I ,

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
‘L4L~~; . € -~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
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using the abbreviation

C~~ = L~ K ( P ,Q) . (5-14)

This is the basic formula for analytical collocation with
kernel functions.

In terpolation with kernel function s is the special case
(5-6), so that simply

K( P ,P 3 ) = C9~ , (5—15)
C
~ k 

= K ( P j~
Pk) • (5-16)

Th is interpolation method Is known from mathematics (Meschkowski ,
1962, p.114); collocation with kernel functiÔñs has been app l i ed
In geodesy first by Krarup (1968 , 1969).

A remark on terminology : the approxim ating function is ob-
tained by fitting the given functi onals exactly (measuring errors
are not taken into account ); therefore one~ ~peak s of “ exac t” or
“pure ” collocation. Sometimes it is also called “deterministic ” ,
to distinguish it from stochastic methods (Dermanls , 1916, p.56;
Moritz , 1976 , p.25), bu t the naile “exac t” , or “pure ’, or “a n a l y-
t i ca l ” , collocat ion seems to be better because the concept “deter-
min ism ” already has -a well-established meaning, namely causal ity
in the sense of classical physics.

M inimum norm property . The solution (5-13) has an impor-
tant property : among all possible solutions (In some Hilbert spa-
cc of ha rmon ic  f u n c t 1o r ~ of the system (5-1), the solu tion (5-13) . 

-

has the minimum norm:

~ f i l  m in imum , (5—17)

If the norm Is defined by the Inner product S

ni 2 (f ,f) (5—1 8)

- - - 
- -
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in the Hu bert space with the kernel function K(P ,Q), so that
there holds the reproducing kernel property

( f ( P ) , K ( P ,Q)) = f(Q) , (5-19)

where (.,
~ ) denotes the inner product with respect to P (Mesch-

kowski , 1962 , p .115; Krarup, 1969 , p .39; Tscherning, 1975; Moritz ,
1978b , p.36). -

6. Application of Tichonov Regularizati on

S i n c e  we sha l l use th e le tter A for a di f f e r e n t purpose
later in this section , we shall denote the operator in (4-1) by
G and wr it e -

Gz = u . - (6-1)

Tlc honov ’ s regu larization method consists in minimizing
th e non li near  f u n c ti onal

Ma[z,u.J = 
~ 

Gz - u 11
2 + czc2 (z) , (6-2)

- 
w here ~ is a numerical parameter and Q (z) is a so-called
stabilizing functional (Tichonov and Arsenin , 1977 , pp.51 ,57),
which may be taken as the square of some norm .

= ii ~~~ 
- (6—3)

(Ib id., p.72). In this way, a un ique solution can usually be ob-
tam ed.

Using (6—3) and very slightly generalizing (6-2) by the
in troduction of a second numerical parameter B, we get the con-
dition

___   

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~5;~~ S -~
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cx I~ z 11
2 

+ 8 1 1  Gz — u 11
2 

m i n i mum . (6—4)

Obvious ly, Gz - u is the error in satisfying (6-1), so
that Gz - u ll will be the error norm. Therefore , (6-4) mini-
mizes a linear combination of the norm of the solution z and
of the error norm . Depending on the relati on between a and B,
a stronger weight is given to one or the other of these two norms .

The linear operator equation (6-1) is , in our  case , noth inq
else than the system (3-8). Let us simplify the notati on by re-
placing

Ol k by 1
k 

oX by X 
- 

(6-5)

Then (3-8) becomes 
-

1 - T y I T— ~~ + 
~~~~~~~ 

,

1 = a ’!’X + L T  : S
2 2 2 ‘ 

- 
( 6 — 6 )

1 = a TX + L T  . 
5 j

q q q

where X is a m -vector (an m x 1 matrix). - We f i n a l l y  p u t
~1 T - 

S

a1 S

- i i  T S 
S‘21 a2

1 = , A = , (6—7)

i - I  aT -

qj q

an d L 1
L

B 
:

2 . (6 8) .
L
q

Here 1 is a q -vector (a q x 1 matrix), A i s a q x m ma-
trix , and B is a linear operato r, formed of the q linear 5¼

• functionals Lk .
4~~ .

- T1~ ~~~~~~~~~~~ 
—  

~~~~- _ _
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With these notation , (6-6) becomes

1 = AX + BT , (6-9)

which is (6-1) with

u = 1 , (6—10)
rxl

z = Lii (6—11)

G = [A B] ; (6-12)

we have used for linear operators the same mode of partitioning
as for matrices. In fact , (6-1) becomes on partitioning

[A B] [~] 
= 1 , 

- 

(6-13)

which is (6—9). 
5

W h a t i s Gz - u in our present case? We have

[A B][~] - 1 = AX + BT — 1 , (6-14)

which is the amount by which the exact equation (6-1) or (6-9)
is not satisfied. Let us denote this “m i sc i osure ” by — n:

AX + BT — 1 = —n . (6-15)

On rearrangement this becomes

1 = AX + BT + n ; (6-16)

here n may be interpreted as the effect of measuring errors; 
S

we call n the “noise ” . It should be repeated that this eque-
tion is nothing but the system (3-8), obtained by linear izing
the nonlinear functional equations (3—1).

: ~~~~~~~ • ~~
- - 

S~~
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Then , in (6-4),

I I G Z — U I! = II — n~ = II n i l  , (~ — 17)

which is the norm of the q -vector n. Any regular quadratic
norm in q -dimensional vector space can be written

2 T
II n il = n Qn (6—13)

with a positive definite regular symmetrix q x q “we ig ht matrix ”

Q . Let us denote its Inverse by D , then (6-18) becomes

H n i l 2 = nT D
_ m

n . (6-19)

If n are random quan tities in a statistical sense , then
D may be considered as the covariance matrix of the measuring
errors n . This statisti cal interpretation of n is not neces-
sary--we may cons ider the norm (6-18) as a metric in a purely
geome tric sense--but it gives a clue as to the proper choice of
the metric for the vector X. If the variance of a random quan-
tity is small , then this quantity can vary only within narrow li-
m its. The larger the variance , the larger variati ons are possible;
and if the variance goes to infinity , the varia tion of our quan-
tity becomes completely free.

Since we allow our parameter X to vary freely and m dc-
pend en tl y ,  each component should have an inf inite variance , or 

S

zero weig ht. Therefore , in an express ion such as (6-18), w i t h X
Instead of n , there should be Q • 0, wh ich gives

II X I I  • 0 . (6—20)

This will be our choice for the norm of X.
Fina lly, the norm for I will be selected a norm In a

Hilbert space with kernel function K(P,Q) , that is , defined by
(5-18) and (5-19):

~4 

~~~~~~~~~~~~~~~~~— - -_ ---- ~_ _ J _ 
- - -

~~~~~~~~~~~~~~~~~~
_ _-
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S 

l i T !!
2 = (T ,T) . (6-21)

T h en , assuming X and I independent of each other:

• l z ll
2 

= 1 1 X 1 1
2 

+ 1 1 1 1 1
2 

= 11 T H
2 
, 

(6-22)

T he r e fo re , the Tich onov condition (6-4) becomes

~~ H T 11
2 

+ -
~~ l1 n i l

2 
minimum (6—23)

or

c~(T ,T) + ~n
TD

_ l
n = minimum . (6-24)

Pu re collocation. As a preparation , let us assume error-

less obse rvations. Then n = 0 and (6-24) reduces to

(1,1) = minimum (6-25)

(we have pu t ~ = 1 w i t h o u t  loss  of genera lity ) .  We fur therm o re
assume X 0 (no systematic effects). Then (6-16) gives

BT = 1 (6-26)

where 1 is given. The desired I Is that function 1, satis-

fying (6-26), which minimizes (6-25).
We solve the problem by means of a Lagrange mu ltip lyer.

Ins tead of minimizing (6-25) under the side condition (6-26), we
• form th e uncon diti onal  m i n i mum of the f u n c ti on

• = .L(T ,T) — kT(BT - 1) , (6-27)
- 2

where the q -vector k serves as a Lagrange multiplyer.

A necessary cond ition for a minimum is the vanishing of

the differential 0f •:

_  

_  

_  

5 5 5 5  ~~~~5

, — ~- —S -~ -~——- ---l~~d ~~ ~~~~~~~ ~~~~~S~~r’ ______
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do = (T ,dT) - k T BdT = 0 . (6-28)

(We can form this differential as if I were a vector.
To avo id misunde rstanding, we po int ou t , however , that dl is
no t an or di nary di fferen t ia l of T , but what is called , in the
calcu l us of var i a ti ons , a first variation , that is , a change in
the function T. In fact , (6—24) is a variational principle , and
(6-28) is the corresp onding Euler equation for our special case.
Eq. (6-28) may be found by replacing, in (6-27), T by I + ~~t ,

where c is a small param eter:

• = .
~ (T + e-r ,T + £-r ) - kT(BT + cBt - 1) =

= .
~.(T ,T)  - kT (BT — 1) 4 .

~c(T ,r) + ~.c(t ,T) -

— ck T B r + 1 ~~~~ 
~,

By symmetry , (t ,I) = (T ,t). We su btract (6-27) and divide by c.

On lett ing c + 0, we thus get

_ _ _ _  
Tlim = (T ,t) — k B~ = 0 , (6—29)

C+O

which is (6—28), with dl a cr. )

The func tion dT in (6-28) is completely arbitrary ; it
need no t even be small since a numerical factor does not matter.
(Of course , dT must belong to the Hilbert space under consider-
ation.)

By the reproducing property (5-19),

dT( Q ) • (dT (P) , K(P ,Q)) (6—30)

or , briefly,

dl • (dT,K) (K ,dT) . (6-31)

— - -
~-~

-- — —. 
—•-- V - - •
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Hence ,

Bd I = (BK ,dT) , (6-32)

and (6-28) becomes

(I,dI )  - ( k TBK ,dT)  = 0

or

(I - kTBK ,d T )  = 0 . (6-33)

Since di is arbitrary , there must be

I _ k T B K = O  
S

or

I = k
TBK . - 

(6-34)

This is an important result. What does it mean? In view
of (6—8) and (6-30), this is nothing else than

T( Q ) = ~~k~L~ K(P~Q) ; 
- 

(6-35)

L means t he opera tor Lr applied to the variable P. Now , (6-
35) is identic al to (5—12), wi th P and Q i nterc hanged and
b = k~ . Thus , the best approximation for 1(Q) Is , in fact , a
l inear combin ation of the base functions (5-911

The rest is straightforward . Considering I a scalar , we
may transpose (6-34):

I (B 5K) Tk , (6—36)

and substi tute into (6-26):

B(BK) Tk 1 . (6-37) —

- - 
-~~~~
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The q x q matrix

C = B (BK)T (6-38)

has , by (6-8), th e elemen ts

Cj.~ = L~ L~ K(P ,Q) • (6-39)

Now (6-37) may be solved for k:

k = C 1 1 , (6—40)

so that (6-36) becomes

T = (BK) TC~~l . 5 (6-41)

In v iew Of (5-14), this is identical to (5—13).
We thus have obtained (5-13) as a consequence of the mini-

mum norm pr inciple (6-25). There are shorter and more complete
proofs (the condition (6—28) -Is necessary but not sufficient);
the advantage of the present derivation is the treatment as a
stra ightforward solution of a variational principle by standard
techniques (Euler equation). Furthermore , it will essentially
simplify he treatment of the general case.

The case a = B • 1 . As a second step, let us consider
the general equation (6-16), bu t put , In the Tichonov condition
(6-24), a • 8 • 1, so tha t

(T ,T) + nTD_ l n - minimum , (6-42)

to be solved under the side conditIon (6-16). We thus have to
form the unconditional mi n t~um of the function

a .
~.(T ,T) + 

lnTD m n - kT (AX 4. 81 + n - 1 ) . ( 6~43) 
- 

—

-V S 
—. —5-— 

- S
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The differential is

do = (I,dT)  + nTD
_ l

dn - kT(AdX + BdT + dn ) , (6-44)

• where dX and dn are ordinary vector differentials. On re-
arranging we get , using (6-32),

do = (I - k
TBK ,dT)  + (nTD~~ - kT )dn - k

TAdX = 0 . (6-45)

Since dl , dn , and dX are arbitrary , do = 0 can only hold if

I - kTBK = 0 , 
5 

(6-46)

n
T
D~~ - k T 

= 0 , (6-47) - 

-

k
T
A = 0 . (6-48)

The first equation gives

T = kTBK , : (6-49)

identical to (6-34) or (6—35). Again , the solution is a linear
combination of base functions (5-9)! -

The transposition of (6-49) gives

I = (BK) Tk , (6-50)

so that -

BT = B(BK) Tk — Ck , (6-51)

us ing the abbreviation (6-38). Eq.(6-47) gives

n T a kTD or n = Dk . (6-52)

Eq.(6-16) may be written

S,-~~~-~~- ~~~~~~~~~~~~~ ~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _
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1 - A X  = BI + n , (6—53)

an d substituting (6—51) and (6—52) we get

1 - AX = (C + D) k , (6-54)

so that

k = (C + D)~~ (l - AX). (6-55)

We substitute this into (6-48), transposed as

ATk = 0

obtaining

AT (C + D) ’l - AT (C + D~~
1AX = 0

so that 
-

X — [A T(C + Dy 1A] AT (C + D) ’l , (6-56)

wh ich determines the parameter vector X . The substitution of
(6-55) into (6-50) then gives the potential:

I - (BK) T (C + D)~~ (l - AX)  . (6-57)

The general case. Take finally the general Tichonov cond i-
tion (6-24)

a(T,T) + BnTD
_
~ n - minimum (6—58)

for solving the equation (6-16)

AX + 81 + n • 1 . (6-59)

— — — — — —U ~__- —~- VI

_________________________ -S ~~~L~~ ’è~~ 
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The condition (6-58) is , for ~ � 0, equivalent to

(T ,T) + nT(?D Y t n = m i n i mum , (6-60)

so that we only have to replace , in (6-56) and (6-57), D by
aD/s. This g i ves

x = [A T(~ C + c~D )_ 1
A] A

T
(8C + aD) 1 1 , (6~61)

I = (~ BK ) T(~ C + c*O) _ 1 (l — AX) , (6—62)

which is the solution of (6-59) under the general Ti chonov con-
dition (6-58).

Obviously, to var i ous ra ti os a : ~ th ere co r re s pon d s a
different weighting between the square of the “func ti on norm ” ,
(1 ,1), and of the “error norm ” , nTD

_
~n. Pure co llocation , with

the condition (6-25) and n = 0, fits the solution exactly to
the - data . This is unsuited for real data in the pres ence of mea-
sur i ng errors , because then the solution is distorted by faith-
ful ly re p ro d uc i ng a l l measur i ng errors;  we r i s k to ge t s pur i ous
osc illations (Eeg and Krarup , 1975 , p.111) .

T herefore , some balan - ce between a ~nd ~ in (6-58) must
be found. But how? We might use some trial -and-error procedure ,
but this does not seem very satisfactory . A theoretically moti-
vated , in a certain sense optima l , solution to this problem is
found by statistical considerations , as we shall see in the fol-
lowing section .

In the i r “Integral Geodesy ” , Krarup and Eeg (1975) give

• equa tions equivalent to (6-61) and (6-62), but w it h d i fferen t
we ighting in the two equations: in (6—61) they use s = 1 - a

(ib id., p.119 , their eq.(5)) and in (6—62) they use B — a = 1

(Ib id., p.112 , their eq.(14)). This follows from employing two

different minimum principles. It seems , however , preferable to

derive both equations from the same v~ariationa l principle (6-58).
We also ment ion that the result for the “error less ” con-

5 — - - — r- - - -  - wr- - — — - S
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dition (6-25) cannot be obtained by simp ly putting a = 1 , 8 0,
as might be expected at first sig ht. The essential feature with •

(6-25) is that n = 0 and D = 0. We , there fore , have to put
D = 0 in (6-61) and (6-62). As a consequence , 8 cancels then ,
and we o btain

X = (A TC_S1 A)_ 1 ATC .51 1 , (6-63)

I = (BK) TC~~ (l - AK) . (6-64)

For A = 0 (no systematic parameters), the las t equa ti on re duces
to (6-41), as it should.

A final word on the solution of these variational princi-
ples by an Euler equati -on. Any Euler equation gives only a neces-
sary , not a sufficient , condition for a minimum. It is not too
d ifficult to show that our solutions do indeed give a minimum.
The proof goes along well - known lines (cf. Morltz , 1972 , pp .22-23).

7. Leas t—S quares Collocation -

One of the possible approaches to improperly posed problems
mentioned at the end of sec.4 are stochastic methods. We have al-
ready been close to such an approach in the preceding section ,
when we interpreted the matrix D In (6-19) as the covariance
matrix of the me asuring errors; however , this was not essential
s i nce , from an analytical point of view , we could as well have
used any other positive -definite regular square matrix .

A more thoroughgoing stochastic approach consists in the
attempt to interpret the norm 

~ Til 
statistically, as well as

the error norm Ii n il . This can be achieved by formally consider - 
S

ing the anomalous gravity poten tial I as a stochastic process. -:

This could be a purely forma l TM stochastic extension ” , motivated
by the irregularity of the anom alous grav i ty field.

~~~~~~~~ i - -- ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
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Historically, this was the way that led to collocation in
its geodetic application. The statistical treatment of the gra-
vity anomalies was initiated by DeGraff-Hunter in 1935 , but did
not  find much response. The contemporary rapid development start-

• ed from Hirvonen ’ s wor k , published in 1956: the explicit treat-
ment of the anomalous gravity field as a stochastic process in
1959 by Kau la , the geodetic application of least- 3quares predic-
tion techniques of stochastic processes by Mor itz in 1962 , genera-
lized by Kaula in 1963 , and the extension to the estimation of I
from given functiona ls , w h ic h i s col l oca ti on in th e proper s ens e ,
by Krarup in 1968-9.

Stochastic process techniques form a very convenient tool
and an intuitive terminology (variances , covar i ance func ti ons ,
etc .), and they permit the estimation of accuracies , which is of
par ti cu l ar impor tance for geo de ti c a ppl i ca ti ons.

T here i s no fundamen tal objec tion aga i ns t embe ddi ng th e
ac tual  Ear th , with its potential I, i n an en sem b le of “ sample
earths ” , ma ki ng poss i ble th e app lication of stochastic-process
techniques. Similar approaches are frequently applied (conscious-
ly or unconsciously ) in various other fields. 

i 
S

From the point of view of logical simp l icity , however , it
appears preferable to fi nd an i nterpre ta ti on , which retains the 

S

conven ient formal apparatus of stochastic processes , but is re-
stricted to our Earth only, without introducing fictitious other -

~~

“earths ” .
This is made possible by an application of Norbert Wiener ’ s 

.5

“covar iance analysis of individual functions ” , in our case , of

• the actual anomalous gravity potential T (Moritz , 1972 ,sec.8).
In th i s case , the covariance function of I is defined as

C(P ,Q) = M 1{TpTQ) , (7—1)

as a homogeneous and isotropic average M 1 of the product T~TQ~
w here

- ‘

~ 

~~~~~~~~~~~ 
S 

~~~~~~~~~~~ - ~~~~~
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M 1{’} = .~~L7 J
2Ir 

f
-,r 

f21T (.)s ined e dA d (7—2)
A— 0 0—0 a 0

is an average over all points (e,x) and all azimuths a ( i b i d .,
p.114), which can be considered as an average over rotation group
spac e.

If we cons ider rotation group space as a probability space
an d on this space a stochastic process , the sam p le funct i ons of
which differ only by rotations , then the probability average co-
incides , by definition , with the “space avera ge ” (7-1) , so that
our process wil l be (trivially) ergodic (Moritz , 1972, p.119).
This is elaborated in detail in (Moritz , 1978a), where ergodic
processes on the sphere are discussed , They are of nec essity non-
Gaussian , since Lauritzen has shown in 1971 that ergodic Gaussian
processes on the sphere are Impossible.

The statistical expectation in the probability space of
the measuring errors n are denoted by M2.

Thus the measuring errors may be considered as “ph ysically
stochas ti c ” quan tities. The anomalou s potential 1 is only for-
mally a space average. If we unde rs tand statist ics as the study
of a large amount of data and their average properties (for in- -~~ P

stance , an analysis of the global human population) , t hen we may
say tha t our treatment of I is statistical , though I itself S

is not a stochas tic quantity in a strictly physical sense (Mo— j
ritz and Sansô , 1978). 

- 

-

‘

Leas t-squares collocation is defined as that collocation
method which minimizes the variance of the estimated quantities ,
in our case , of the potential I and the parameter vector X.
Let T~ be the true potential and T its estimate from the gi-
ven data , affected by measuring errors , at a particular point P. - H
Then the variance of the estimate I , or the square of the pre-
diction error in , is defined as -

P

a M 1M 2{(1 
- T,)

2} , (7—3)

- 

, 5~

-5— 

k. 
— 
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that is , as the average of the square of the true prediction er-
ror 1 - I~, at some point P , ex tended over all measuring er—
rors (M 2) and all points of the sphere (M 1 ) .

This definition is very natural ; it corresponds to a g b -
• bal average.

Similarly the variance m~ of the estimate for a compo-
nent X . of the parameter vector X is defined. The conditions

m~ = m i n i m u m  , (7-4)

m~ = m i n i mum , (7-5)

for all points P of the sphere and all components of X , define
least-squares collocation.

Spec ial cases are least-squares prediction of gravity ,
which uses only (7-4)--cf. (Heiskanen and Moritz , l967 ,p.268)--
and , of course , least-squares adjustment , whic h uses only (7-5).

Th e re sult of conditions (7-4) and (7-5) are as follows ;
we get co llocation in a Hilbert space , in which the kernel func-
tion is given by the covariance function (7-1), and I an d X
are then expressed by (6—56) and (6-57). Putting

C + D = C = r , (7-6)xx
BK = C , (7-7)ax -~~

we get the well -known formulas of least-squares collocation

X = (A Tr_1 A ) _ 1
ATrI 1 , ( 7 — 8 )

s = C
~~
r 1 (1 — AX) . (7—9)

Here we have replaced I by s , because the anomalous potential ,
or any other quantity of the anomalous gravitational field , Is
also called a “signal” , denoted by S. A pleasant consequence of
least-squares methods w ith respect to linear transformation Is
that an equation of form (7-9) holds for the direct estimation

L —

-g ~-a. . .~-4. — — ~~~~~~~~~~~~~~ 
,
~~~ iLt1l~T.L&~
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of any anomalous field quantity , all these quantities (signals)
being linear functions of 1. In fact , eq.(2—36) of (Moritz ,
1972), has been derived for the estimation of any signal.

T h us , leas t-squares collocation corresponds to a Ticho nov
condition (6—58) for which the kernel function defining the norm
T(T,T) i s th e covar i ance funct i on , and for which a = 8 = 1.
T h us , the relative weights of the two summands (6—58) are unique ~
ly determined in such a way as to obtain an optima l (minimum va-
riance ) result .

The observation equation to be satisfied is (6-16):

1 = AX + BT + n • (7-10)

Putting

BT = s ’ , - - (7— 11)

which is the influence of the anomalous field on 1 , that is , the 4
“signal part” of 1 , we have

1 • AX + 5 ’ + n , 
- 

(7—12 )

which Is the fundamental equation of least-squares collocation ;
cf. eq.(2-1) of (Moritz , 1972 , p.7), with 1 denoted by x.

The simplest way to derive (7-8) and (7’9) is to use a
finite minimum norm principle:

sTC
_
~s + nTD~~n m in imum , (7-13)

where the vector s comprise s the components of s ’ In (7-12)
plus the signals to be estimated in the given problem (and only
these); C is the covari ance matrix of this vector s; cf . (Mo —
ritz , 1972 , p .122); a similar principle is used (Ibid ., sec .2),

This approach is complete ly equivalent to (6—42), which

N
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uses the full Hilbert space norm . Here only finite matrix opera-
tions are required; Hilbert space lurks invisibly in the back-

5 ground (to use another metap hor: matrix formulas such as (7-8) S

and (7-9) represent the finite-dimensional surface of infinitely-
dimensional Hilbert space ).

T hus , least-squares collocation satisfies two conditions:
a minimum norm condition ((6—42) or (7-13)) and a minimum vari-
ance cond ition ((7-4) and (7—5)).

The minimum norm condition (especially in the form (7-13))
is mathematically convenient to handle , but physically it appears
somewhat unnatural: -It combines additively two different quanti-
ties (norms), which have a completely different p hysical charac-
ter ; the first depends on the anomalous gravitat ioial field , the
secon d on random measuring errors. -

Muc h more natural seems the minimum variance condition:
the average in (7-3) (and similarly in (7-5)) -is over both signal
and noise , but affecting the same quantity (T~ - T~ )

2 : this is
felt to be exactly as it should be.

An interesting variant of the minimum variance approach 
- -

is to start from a principle such as (7-4) and - to postulate a
linear estimation that is symmetric with respect to -the rotation
group. In this way it is possible to deduce (7-1), rather than
introducing it by •definition (Sansd, 1978).

Error Covar iances. Probabl y the mos t importan t fea ture of
the statistical approach is the possibility to estimate , not only
the values of anomalous field quantities and of systc~;na tic para-
me ters , but also their accuracy .

The error var iances of the parameter vector X and the
signal s and their covar lances are expressed by the error co-
var iance matrices 

~~~ 
E9~ and 

~~~ 
the last being the cross-

covar iance matrix of X and s. The vector s comprises any
number of signals (anomalous field quantities) estimate d by the

least-squares collocation procedure under consideration.
We have (Mor itz, 1972 , pp .30—33)

N
- 5- 

- - — 
- -

* ~~~~~~~~~~~~~ — ç
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~~ 
= (ATr~~Ay~~, (7—1 4)

E = C - C ~~
1C + HAE ATHT (7 15)

= E
XX A H  (7-16)

w here

H = C t 1 . (7-17)

The matrix C - is the signal covariance matrix of the s that
as

was to be estimated; E is its erro r covariance matrix.
55

S These formulas express the accuracy of the statistically
opt ima l estimates (7—8) and (7—9). The statistical treatment of
the gravity field , however , makes it even possible to estimate
the accuracy of other linear estimation formulas such as (6—61)
and (6-62). We wr i te these equa ti ons i n the form

X = Gi , (7—18)
s a H(l — AX)  = H(l — AG 1 )

= H ( I - AG)l
= 1.1 , (7—19)

I denoting the unit matrix and the vector s compr ising those
values of I that were estimated. 

-

The least-squares estimates (7-8) and (7—9) may be written
i n an analogous form: 

S

X a Gl , (7—20)
s a Ll . (7—21)

Then equations (3—52a ,b) of (Moritz , 1972) give:

(7-22)

- E1~ + (L - L)r(L - L) T . (7-23)

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ S
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Here and are th e erro r cova ri anc e ma tr i ces o f
the estimates (6—61) and (6-62), and 

~~ 
and E are given

• by (7—14) and (7-15). It should be noted that , in the least —
squares estimates (7—8) and (7-9), the matrices C and C
are derived from the covariance function , whereas the correspond-
i~ig matrices C and BK in (6-61) and (6-62) are to be der ived
from the kernel function used .

Geome trical interpretation of minimum variance , Ihe con-
dition of minimum variance has an interesting geometrical inter-
pretation by means of the dual space , which is the space of all
bounded linear funct ionals of the elements of the given linear
space (Tscherning, 1978,p. 175).

Let , for simplicity , be A = 0 and D 0 , that is , con-
sider the case of pure collocation without random errors and sy-
stematic effects. Then (6-6) reduces to

i~ = L~T , (7-24)

an d the least-squares estimate (7-9) becomes

5 = C C~~ l . (7-25)ax

Here S

s = FT (7-26)

is a linear functional , to be estimated , of the anomalous poten-
ti al I ; as a ma tter of fac t, (7-25) coul d also have been ob-
tam ed by applying the linear functional F on both sides of
eq. (5—13) .

• The estimate (7-25), besides satisfying the requirement of
• m i nimum norm fl Iii , also sa tisfies the condition

IL F ’~— FU ’ = mIn i mum , (7-27)

~~~~~~~~~~~~ S
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w here 
~

( • 
~~

‘ denotes the norm in the dual space and F* stands

for the “ true ” va l ue o f th e funct i ona l , of which F is the es ci—

mate. The minimum (7-27) is taken with respect to all possible

estimates of F as linear combinations of the q given func-

tionals L~
In geome trical terms , the “best” estimate (7-25) is sim p~ •~

the orthogonal projec tion , of the functiona l to be estimated , on-
to the subspace of the dual space spanned by the q given func-

~i ona l s L .
For th e case of pure col l oca ti on , this is shown in (Krarip ,

1978, p .200). (The geometrical interpretation is perhaps best

u nderstood In the simple finite-dimensional case of ordinary least-

squares adjus tment , w here li near func ti ona l s reduce to v ec tors
(Mor it z , 1966).)

This geometrical situation is valid for arbitra ry kernel

functions. A physical interpretation , however , seems to be poss ible

only if we identify the kernel function with the covar iance func-

tion; then ~IF*
_ 

Ffl’ is simp ly the standard error m7 of esti-

ma ti ng th e func t ional F • In fac t ,

(F*_ F)T = F*T - FT = s~ - s = C
F 

(7-2 8)

is the “true error ” , the difference between true value s* and

pre dicted value s , and

fl F~ — FIl ’2 = M{e2} = in2 (7—29)

Is the average of e~ , that i s , the square of the standard pre-
diction error mF

Rema rk on Terminology . The m inimum varia nce conditions

(7-4) and (7-5) correspond to simila r conditions ~n least—squares
adjustment and least -squares prediction. Therefore , the name ,
least -squares collocation , seems to be appropriate for the case
in wh ich the solution is given by (7-8) and (7-9).

In con trast to thi s name , collocation us ing an arbitrary

- - 
S - ~~~~~~~~~~~~~~~ 
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kernel function , which is the case with the methods described in 
S

sections 5 and 6, might be called collocation with kernel func-
tions. Pure collocation (sec. 5) wo uld then be kernel function

S collocation w ithout noise (and without systematic parameters) ,
• and the case of “integrated geo desy ” -- formu las such as (6-61)

and (6—62)—— would then be kernel function collocation with noise ,
including the estimation of systematic parameters.

I t  is evident that also the results of collocation with a
general kernel function satisfy a minimum princ ip le of form (6-24)
and , dually , (7—27), which might also be called (geometrical)
least -squares principles; therefor e Krarup (1978, p .197) uses the
term “ least -squares col location ” also in the case of a general
k e r n e l f u n c ti on . S

The terminology suggested here has the advantage of distin-
guishing between “ statistical” and “geometrical” collocation.

We finally mention that a comprehensive review of quadra-
tic norm and minimum variance estimation princip les i s gi ven In
(Grafarend , 1978), Grafarend also considers rank -deficients equa-
tions , occur ing when the components of the vector X are not li-
nearly independent.

I
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8. Rev iew; Alternatives

In this report we have asked ourselves in which way arbi-
trary geodetic oF~..ervations of the earth ’ s gravitational field S

can be used to obtain information about this field and to de~e~ 
-

mine thi s field to the best possi ble extent. We have seen that ,
us i ng con temporar y ma thema ti cal tec hn iques , a straight road lea Ls
from the nonlinear observational equations to collocation with
kernel functions and least-squa res collocation. The main stages
on the way were linearization (sec.3) to obtain a linear impro- S

per ly posed problem (sec.4), to which three different standard
me thods of solution are applied : a restriction of the solution
space , leading to “ pure collocation ” (sec.5)., variational prin-
ciples of Tichonov type, by which measuring errors can be taken
i nto accoun t, lead ing to a generalized collocation with kernel
func ti ons , and a statistical approac h , leading to least—squares
col location, S 

S

We shall now discuss these various s-tages and possible al-
ternative s.

L inearization. All geodetic observations are nonlinear 
S

func tionals of the potential V and of certain parameters X.
Each observation gives a functional equation , and q observa - S -

tions give a set of q of such observations. The determination
of V and X from this system of equations is a nonlinear im-
proper l y posed problem. By a Taylor linearization we get a system
of q l inear functional equations for the anomalous potential
I and for correct ions , again denoted by X , to the parameter
vector. For this l inear improperly posed -problem , standard mathe -
matical techniques exist. If the accuracy of linearization is
no t suff ic ient , we may iterate. A direct attack of the nonlinear
problem does not- seem possi ble with present mat hematical tools:
there is at present no alternative to linearIzation.

Why collocation? Collocation in a mathematical sense is
the approximation of a function by fitting an anal ytical expres-
sion to q given linear functiona ls; for a very simple example

L:_. _L 4 L _ - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
- - i ~~~
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see (Moritz and Sunkel , 1978 , p .32).
Such collocation methods are used in applied mathematics

for the approximate solution of differential equat ions, etc.
(which are also functional equations! ). Here the functionals are
usually supposed to be given in a mathematically exact way, and
the analytical expression is required to fit these data exactly.

Suc h a “pure ” or “mathematical” col locatior , is , in general ,
not adequately applicable to our present geodetic pr oblem , in
view of the inevitable random measuring errors (noise). An excep-
tion is , for i ns tance , least-squares interpolation of gravity
anomalies (interpolation is a special case of collocation , in
which the functiona ls are simpl y the values of the function at
discrete points); here , the measuring errors of gravity are con-
sidered to be negligibly small. Generally, measu ri ng errors , or
“ noise ” , must be suitably taken into account: we have a problem
of “collocation with noise ” . (This is true for the linearized
problem , but may be said to hold even for the original nonlinear
p ro b lem because measuremen ts , by their very nature , are nonl in-
ea r func ti onals  of V and X , and the notion of collocation may
be ex tended , i n a natural wa y , also to the fitting of nonlinear
functionals. But , as we have sa i d , we shal l anyway restrict our-
selves here to linearized problems.) -

•

Thus the operational approach to physical geodesy, start-
i ng f rom th e measuremen ts , inevitably lead to a collocation prob-
l em (w it h no i s e); there i s , i n th i s sense , no al ternative to col-
location. What can be chosen in different ways , i s the anal ytical
express ion for approximating the potential .

Linear or nonlinear approximation. Instead of a linear
com bination (5-2) of base funct ior5 one could , I n  principle , also

• env isage other forms of approxi mation. For reasons of mathema-
t ical s impl ic i ty , and also in v iew of the smallness of the quan-
titles under consideration (anomalous field quan tities and cor-

rections to the parameters), linear ap proximatIons are used prac-
tically without exception. (An exception would be nonlinear pre-

dict ion to be mentione d later wh lch Is , however , hardly used In

_ _  S ~~~~~~~~~~~~~~~~~~~~ -
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geode tic practice.) From the point of view of theoretical simpli-

c ity an d prac t ical usefu lness , the restriction to linear approxi
ma tion methods seems to be fully justified.

Al ternative base functions. Besides kernel functions , many
o ther func ti ons are be i ng used as b ase func ti ons in ex pre ss i on s
such as (5—2). We only mention polynomials in polynomial interpo -
lation , trigonometric functions in trigonometric interpolation
and ap p rox ima ti on and , i n geode ti c appl i ca ti ons , multiquadric
functions (Hardy , 1976). Par ticularl y useful are spline functions

S and other finite elements; for an elementary discussion and com-
par ison with kernel functions cf. (Moritz , 1978b). An interesting
geode tic application of spline functions is to a fast computation
of covar i ance func ti ons (S linkel , 1978).

These functions can be very well suited for particular
ap plications , bu t they cannot be used to solve the general opera-
tional problem 0f physical geodesy because they are not harmonic
outside the earth , which is required for approximating the poten-
tial I. 

-

S Spherical harmonic functions can be -used to represent the
potential , and they are , in fact, fundamen~t~ l for this purpose.
From a pract ical point of view , they are par ti cularly su it ed for
representing the global field at satellite alti tudes. The sample
func tions of Giacaglia and Lundquist (1972) are finite linear
comb inations of spherical harmonics in a form convenient for cer-
tain purposes. For local representations of the detailed gravity
field , however , spherical harmonics are not applicable. This ex-
cludes their use as base functions in the present general context. •

Kernel funct ions can equall y well be used for local and
glo bal purposes ; this explains their application in our general
opera tion approach.

It should be mentioned also that any cho ice of base func-
tions leads to a q x q system of linear equations for the co-
efficients; for kernel functions , this system will have a symme-
tric matrix .

-~
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Al ternative norms. Let us now turn to the Tichonov prin-
ciple (6-4). Why should we use a quadratic norm , of form (6-19)
an d (6-21), respectively? The reason is simple: only then will
we get  a linear variational (Euler) equation , leading to a linear
combination of base functi ons.

This motivates the use of a quadratic norm , which is the
inner product of I with itself:

2
11 T H = (T ,T) , (8—1 )

that is , the use of Hilbert space . But why a Hilbert space with
kernel functions , not some ot her H i lber t space?

The reason is that only then the Euler equation will , in
fact , lea d to a linear combination (5-2) of base functions. Let
us illustrate this by means of a counterexample. If we restrict
ourselves to the interpolation of functions f defined on a
sphere a , then a very obvious choice of norm would be

II f II~ = (f ,f) = f f f
2

da . (8-2)

The Hilbert space so defined does not have a kernel function in
the proper tense; however , it may be considered as a Hu bert
space with a “general ized” kernel function , wh ich is a Dirac del-
ta function defined by -

6(P ,Q) = 6(Q,P) , -

6(P ,Q) — 0 i f P 
~ Q , (8-3)

ff6 (P,Q)da~ - 1 for fixed Q

T hen

( f (P ) , k(P ,Q)) ( f (P ) , 6(P,Q)) fJf(P)6(P ,Q)da- —
a

— f(Q)ff6 (P,Q)da~ = f ( Q )  ,

— —  - S - 
- 
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in agreement with the definition (5-19).
For our i nterpola ti on on th e s ph ere we th us h av e, by (5-15),

a a (P,P~) . (8-4;

T hese “functions ” are zero ou tside the interpolation points . The

interpolation function , the linear combination (5-2), has , there-
fore , the property that it is zero everywhere outside the pcints
at which the functional values are given; there is no smooth in-
terpol ati on.

This simple example will illustrate that onl y quadratic
norms w ith kernel functions can be used.

It is not difficult to see that a kernel function norm
i s a natural ex tens i on , to H i lber t space , o f th e usual quadratic
norm

xTK~~x , (8-5)

w ith a pos i t i ve def i nit e regular matr i x K, of vec tors x i n a
finite -dim ensional space.

Thus , the Tichonov approach with a quadratic norm inevi—
tably leads to collocation with kernel functions; other base func-
tionscannot be obtained in this way. H

In order to further illustrate this , let us consider an-
other example. Assume a function y = f(x) to be defined on the
unit circle (0 ~ x ~ 2ii-), such that

f(2ir ) f(0) . (8-6) 
- 

S

Let us further assume that the function has a square -integrab le
second derivative f” (x) and define the norm of f by

I I  f 1 1

2 
— j2w If”(x) 

1

2 dx (8—7)
0

(It is actually a semi-norm , but this is irrelevant here).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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Expanding the function f(x) into a trigonometric series 
S

we have 
S

f (x)  = a~ + ~~(a cosnx + b sinnx ) , (8-8)

f ” ( x )  = _
~~~

1
n 2 c o s n x  + b sinnx) . (8-9)

The substitution of the last equation into (8-7) and subsequent
integration leads to

I I  f 1 1

2 
= w~~~n4(a 2 

+ b 2) . (8—10)

Using as kernel function

K(P ,Q) = 1 ~n
4cos(x  — 

~~
) , (8—11)

w here

x~~= x ~~ ~~~~~~~

we have

27~ A 2 c 2K(f(P), K(P ,Q ))  = ~~ -~ —-~~ ~~~~~~ dx , (8—12)
dx ax

which is readily seen to be equal to f(F~) , provided

a0 = ~~ f
21T f ( x ) dx  = 0 . (8—13) 

- 

-

~

T hus , for functions satisfying (8—13), (8-11) is the reproducing
kerne l. Interpolation and collocation With such a kernel function 

S

correspond to minimizing the norm (8-7).
The minimum of a norm suc h as (8-7), the  integral being ex-

tended over an interval fa ,bJ , is used to def ine cubic sp line
functions (there are nonperiodic and periodic splines); cf. (Mo-
ritz and SlJnkel , 1978, pp .26 and 44).

- -
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The physical interpretation of minimum norm (8-7) is m l r , _

mizing the total curvature. Similarly, we cou ld , in geodesy, us’
the condition that the total mean curvature of the geoid (the in-

tegral , over the sphere , of the square of mean curvature) is mi-
nimized , in order to define a kernel function.

Leas t-squares collocation versus collocation with a gene -
ra l kernel function. In least-squares collocation , the kernel
function is chosen to be the covariance function; see the end of
sec.7. The basic advantage of this choice is the statistical sig-
n ificance: it gives the best linear estimate (minimum variance
of the result).

Since the anomalous potential is not normally distributed
(sec.7), the “bes t li near ” est imate is not necessarily the abso-
lute ly “best” estimate: nonlinear estimates may still reduce the
var iance of the result. Therefore , nonlinear prediction has been
cons idered (Kaula , 1966; Grafarend , 1972). For most practical
purposes , however , l inear estimates seem to be fully adequate .

Of decisive importance is the possibility , in least—squares
co l loca ti on , to est imate the accuracy of the results. This can be
done solely on the basis of the covariances , w ithout needing ac-
tual measurements. Therefore , least—squares colloca tion can be 4
used for investigating possible configurations of measurements ,
for the planning of surveys , and even for the investigation of
accuracies to be expected with the use of measuring techniques
which are being developed or only being envisaged for the future .

An interesting feature has been pointed out by Tscherning
(1977): if we take the covariance function as kernel function ,
then the anomalous potential I has an Infinite norm , so that T
itself does not belong to the Hilbert space under consideration.
In physical terms, taking for example interpolation , this means
that the Interpolating linear combinations of kernel functions
are all much smoother than T itself. In practice , this is an
advantage rather than a deficien cy ; it is , however , a slight

-

- 
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theoretical drawback because it makes it difficult to prove con-
vergence of the approximating to the “ true ” function if the den-
sity of the data approaches a continuous distribution (Tscher-
fl ing, 1977). This drawback can easily be remedied by changing the
higher-order spherical -harmon ic terms of the covariance function
(which can anyway not be exactly determined because of lack of
data) by an arbitrarily small amount which does not noticeably
change this function.

T h e exac t covar i ance funct ion could , of course , only be S

determined if we knew I exactly (and then we should not need
collocat ion!). So all we can do is to fit an appropriate anal y-
tical expression to empirical data (gravity variances and covari-
a n ces , de gree variances from a spherical-harmonic development ,
etc.).

So , in the practice of least-squares collocation , we us e
an anal ytical kernel function which approximates the covariance
function without coinciding with it . It s hould , however , be c l ose
enou gh so that accuracy estimates are meaningful

Even the use of- a general harmonic - kernel function precise-
ly preserves the mathematical structure of the gravity field , ex— S

pressed by relations between the potential , gravity anomalies , de-
fl ections of the vertical , etc.. 

S

The approach followed in practice by most workers in this 
S

f i e l d , whether they explicitly favor a statistical interpretation -
~~~

or no t, is to use a kernel function which has a simp le ana l ytical
ex pression and exhibits the main features of an empirical covari-
ance func tion.

Rela tion to least—s quares adjustment. Least—squares collo-
cat ion differs from least-squares adjustme nt in two respects.

Firs t, from a phys ical point of view , adjustment con ta i ns
onl y one kind of statistical quantity , namely the random measur-

ing errors (noise); in least-squares colloca tion there are two

physically different quantities that are treated statitically:
quantities of the anomalous gravity field (the signal ) and measur-
ing noise.

~~~~~~•S~~~~~~~~
_ 
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Second , from a formal-mathematical point of view , the im-
por tant distinction is that the signal , in contrast to the noise ,
i s a con ti nuous func ti on ; th erefore , an adequa te treatment requir-
es some infinitely—dimensional function space , espec ia l ly Hil bert
space. Operations in Hilbert space show formal similarities w ith
opera tions in finite-dimensional space but are qualitatively dtf-
feren t, just as differential equation s are qualitatively different
from difference equations although there are formal similarities.

It is true that the gravity field at satellite elevations
can be adequately described by a spherical-harmonic expansion trw -

cated at a sufficiently high degree; the coefficients of such a de-
ve lopment do form a finite-dimensional vector. Thus , if we exclu-
sively work at satellite altitudes , we m i gh t, i n fact , rep lace fi ll-
ber t space by a finite-dimensional space , wi thout essentially im-
pair ing the accuracy .

Th is situation changes essentially if we consider the gra-
vity field at the earth’ s surface by including terrestrial obser- H 

-

vat ions or , e.g. , satellite altimetry . The detailed gravity field
at the earth ’ s surface cannot be . adequa tely described by a spher-
ical-harmon ic expansion , ne ither from a theoret i cal po i nt of v i ew
--because the convergence - cannot be guaranteed—-nor from a practi-
cal point of view—-because , if at all poss ible , such an expans i on
would requ ire an excessively high numb er of terms 1 which is be-
yond the capacity of any present digi tal computer. -

Hence , the general replacement of H ilbert space by a finite- 
- I

dimensiona l space is neither theoret ically nor practically feasible.
It is also not necessary since , as we have seen , the practi- S

cal collocation formulas are finite —dim ensional matrix formulas.
The approach of (Moritz , 1972) works entirely with finite matrices;
the Hilbert space character expresses itself only in the fact that S

covariances are propagated , not by matrix operations, but by linear S

operations (such as differentiation ) of covar lance functions. See
also (Moritz , 1976, sec.4).

A feature of collocation that is theoretically most inter-
esting is that , from a formal—geometrical point of view , least—
squares collocation can be con sidered as a problem of least-squares 

- 

- .

adjustment in Hu bert space (Krarup, 1969, pp.34-41).
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We also mention that the usual least-squares solut ion of S

over de term i ne d sys tems of li near equa ti ons can be cons id er ed as
a “quasi-solution ” according to the theory of improperly posed
p ro ble ms (T i k honov and Arsen i n , 1977 , C ha pter I).

Discrete versus continuous data. In gener al , geodetic data
are discrete measurements of a finite number; the present report
is based on this situation. There are exceptions , for instance ,
continuous recordings of data profiles; they are usually convert-
ed into discrete data by a representative selection.

A prac tically more important case is , for instance , a very
dense gravity survey around a station at which precise deflections
of the vertical are to be computed. In such cases , a comb i na ti on
of collocation with other methods , such as integral formulas (Mo-
ritz , 1975), might be appropriate.
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